A Scaling Model for Predicting the Gas-Channel Formation Period in Crater-Like Electrospinning of Nanofibers

نویسندگان

  • Jian Liu
  • Wan Shou
  • Lei Zhang
  • Wei Liang
  • Dong-Wei Huang
  • Yong Liu
چکیده

Crater-like electrospinning is a novel and cost-effective method for the mass scale production of nanofibers. The gas channel in the polymer solution plays a key role to produce a bubble Taylor cone or a crater-like Taylor cone, which is the key to eject the thin fluid jets (finally solidified into nanofibers) in electrospinning process. However, the formation mechanism of gas channel of crater-like Taylor cone is still unclear, which hinders further development of this process. In this work, a simple and effective scaling model was firstly established to predict the period of the gas-channel formation in the polymer solution during electrospinning process. Our theoretical analysis showed that the gas-channel formation period was mainly determined by the input air pressure during the process. The relationship between the formation period and the input air pressure followed a scaling law. In order to verify the model, crater-like electrospinning process was carried out and a high-speed digital camera was employed to observe the gas channel. The experimental results agree well with the scaling model, which indicates that the proposed system is feasible. The scaling model could be useful in helping us to understand the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Advances of Electrospun Nanofibers in Membrane Technology

Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning proce...

متن کامل

Formation of Poly(vinylidenefluoride) Nanofibers: Part I Optimization by Using of Central Composite Design

Poly(vinylidene fluoride) (PVDF) nanofibers were prepared via electrospinning process. Several different factors influence on this process and application of experimental design for its optimization is of great importance. The central composite design (CCD) was used for planning and optimizing of the experiments and also, the analysis of variance (ANOVA) was employed for the statistical va...

متن کامل

Formation of Poly(vinylidene fluoride) Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions

Poly(vinylidene fluoride) (PVDF) fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA). Proof of this incompatibility was explained by the properties of PVDF a...

متن کامل

The Effect of Adding Alginate Natural Polymer on the Structure of Polyvinyl Alcohol Biocompatible Nanofibers in Electrospinning Process

Background: Nowadays, in order to preserve the environment and sustainable development, the use of natural and renewable resources is a priority for industries. High performance and specific structure of nano-biocompatible materials has attracted researchers. In this research, alginate polymer, which is generally obtained from marine sources such as algae, was added to polyvinyl alcohol nanofi...

متن کامل

Drug-loaded electrospun nanofibrous sheets as barriers against postsurgical adhesions in mice model

Objectives: Postsurgical adhesion is one of the common complications after surgery. Some anti-adhesion barriers are commercially available which are not customary used by physicians as much as expected because of ineffectiveness. Recently, nanofibers have been introduced as anti-adhesion barriers with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014